Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stand Genomic Sci ; 11(1): 70, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27617060

RESUMO

Halorubrum lacusprofundi is an extreme halophile within the archaeal phylum Euryarchaeota. The type strain ACAM 34 was isolated from Deep Lake, Antarctica. H. lacusprofundi is of phylogenetic interest because it is distantly related to the haloarchaea that have previously been sequenced. It is also of interest because of its psychrotolerance. We report here the complete genome sequence of H. lacusprofundi type strain ACAM 34 and its annotation. This genome is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea.

2.
Stand Genomic Sci ; 6(1): 74-83, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22675600

RESUMO

Polynucleobacter necessarius subsp. asymbioticus strain QLW-P1DMWA-1(T) is a planktonic freshwater bacterium affiliated with the family Burkholderiaceae (class Betaproteobacteria). This strain is of interest because it represents a subspecies with cosmopolitan and ubiquitous distribution in standing freshwater systems. The 16S-23S ITS genotype represented by the sequenced strain comprised on average more than 10% of bacterioplankton in its home habitat. While all strains of the subspecies P. necessarius asymbioticus are free-living freshwater bacteria, strains belonging to the only other subspecies, P. necessarius subsp. necessarius are obligate endosymbionts of the ciliate Euplotes aediculatus. The two subspecies of P. necessarius are the instances of two closely related subspecies that differ in their lifestyle (free-living vs. obligate endosymbiont), and they are the only members of the genus Polynucleobacter with completely sequenced genomes. Here we describe the features of P. necessarius subsp. asymbioticus, together with the complete genome sequence and annotation. The 2,159,490 bp long chromosome with a total of 2,088 protein-coding and 48 RNA genes is the first completed genome sequence of the genus Polynucleobacter to be published and was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program 2006.

3.
Stand Genomic Sci ; 7(1): 44-58, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23450099

RESUMO

Starkeya novella (Starkey 1934) Kelly et al. 2000 is a member of the family Xanthobacteraceae in the order 'Rhizobiales', which is thus far poorly characterized at the genome level. Cultures from this species are most interesting due to their facultatively chemolithoautotrophic lifestyle, which allows them to both consume carbon dioxide and to produce it. This feature makes S. novella an interesting model organism for studying the genomic basis of regulatory networks required for the switch between consumption and production of carbon dioxide, a key component of the global carbon cycle. In addition, S. novella is of interest for its ability to grow on various inorganic sulfur compounds and several C1-compounds such as methanol. Besides Azorhizobium caulinodans, S. novella is only the second species in the family Xanthobacteraceae with a completely sequenced genome of a type strain. The current taxonomic classification of this group is in significant conflict with the 16S rRNA data. The genomic data indicate that the physiological capabilities of the organism might have been underestimated. The 4,765,023 bp long chromosome with its 4,511 protein-coding and 52 RNA genes was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program (CSP) 2008.

4.
Stand Genomic Sci ; 6(3): 325-35, 2012 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23407619

RESUMO

Thauera aminoaromatica strain MZ1T, an isolate belonging to genus Thauera, of the family Rhodocyclaceae and the class the Betaproteobacteria, has been characterized for its ability to produce abundant exopolysaccharide and degrade various aromatic compounds with nitrate as an electron acceptor. These properties, if fully understood at the genome-sequence level, can aid in environmental processing of organic matter in anaerobic cycles by short-circuiting a central anaerobic metabolite, acetate, from microbiological conversion to methane, a critical greenhouse gas. Strain MZ1T is the first strain from the genus Thauera with a completely sequenced genome. The 4,496,212 bp chromosome and 78,374 bp plasmid contain 4,071 protein-coding and 71 RNA genes, and were sequenced as part of the DOE Community Sequencing Program CSP_776774.

5.
Stand Genomic Sci ; 5(1): 112-20, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22180815

RESUMO

Tolumonas auensis Fischer-Romero et al. 1996 is currently the only validly named species of the genus Tolumonas in the family Aeromonadaceae. The strain is of interest because of its ability to produce toluene from phenylalanine and other phenyl precursors, as well as phenol from tyrosine. This is of interest because toluene is normally considered to be a tracer of anthropogenic pollution in lakes, but T. auensis represents a biogenic source of toluene. Other than Aeromonas hydrophila subsp. hydrophila, T. auensis strain TA 4(T) is the only other member in the family Aeromonadaceae with a completely sequenced type-strain genome. The 3,471,292 bp chromosome with a total of 3,288 protein-coding and 116 RNA genes was sequenced as part of the DOE Joint Genome Institute Program JBEI 2008.

6.
BMC Genomics ; 12: 334, 2011 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-21714912

RESUMO

BACKGROUND: Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria. METHODS: The complete genomic sequence of Cfl. aurantiacus has been determined, analyzed and compared to the genomes of other photosynthetic bacteria. RESULTS: Abundant genomic evidence suggests that there have been numerous gene adaptations/replacements in Cfl. aurantiacus to facilitate life under both anaerobic and aerobic conditions, including duplicate genes and gene clusters for the alternative complex III (ACIII), auracyanin and NADH:quinone oxidoreductase; and several aerobic/anaerobic enzyme pairs in central carbon metabolism and tetrapyrroles and nucleic acids biosynthesis. Overall, genomic information is consistent with a high tolerance for oxygen that has been reported in the growth of Cfl. aurantiacus. Genes for the chimeric photosystem, photosynthetic electron transport chain, the 3-hydroxypropionate autotrophic carbon fixation cycle, CO2-anaplerotic pathways, glyoxylate cycle, and sulfur reduction pathway are present. The central carbon metabolism and sulfur assimilation pathways in Cfl. aurantiacus are discussed. Some features of the Cfl. aurantiacus genome are compared with those of the Roseiflexus castenholzii genome. Roseiflexus castenholzii is a recently characterized FAP bacterium and phylogenetically closely related to Cfl. aurantiacus. According to previous reports and the genomic information, perspectives of Cfl. aurantiacus in the evolution of photosynthesis are also discussed. CONCLUSIONS: The genomic analyses presented in this report, along with previous physiological, ecological and biochemical studies, indicate that the anoxygenic phototroph Cfl. aurantiacus has many interesting and certain unique features in its metabolic pathways. The complete genome may also shed light on possible evolutionary connections of photosynthesis.


Assuntos
Chloroflexus/genética , Genoma Bacteriano , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Carbono/metabolismo , Chloroflexus/classificação , Chloroflexus/crescimento & desenvolvimento , Mapeamento Cromossômico , Complexo I de Transporte de Elétrons/genética , Enzimas/genética , Redes e Vias Metabólicas , Nitrogênio/metabolismo , Fotossíntese/genética , Filogenia , Análise de Sequência de DNA , Enxofre/metabolismo
7.
J Bacteriol ; 193(15): 4023-4, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21642468

RESUMO

The genome of the anaerobic halophilic alkalithermophile Natranaerobius thermophilus consists of one 3,165,557-bp chromosome and two plasmids (17,207 bp and 8,689 bp). The present study is the first to report the completely sequenced genome of an anaerobic polyextremophile and genes associated with roles in regulation of intracellular osmotic pressure, pH homeostasis, and growth at elevated temperatures.


Assuntos
Álcalis/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Genoma Bacteriano , Sedimentos Geológicos/microbiologia , Cloreto de Sódio/metabolismo , Anaerobiose , Bactérias/metabolismo , Sequência de Bases , Dados de Sequência Molecular
8.
J Bacteriol ; 193(13): 3399-400, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21551312

RESUMO

Nocardioides sp. strain JS614 grows on ethene and vinyl chloride (VC) as sole carbon and energy sources and is of interest for bioremediation and biocatalysis. Sequencing of the complete genome of JS614 provides insight into the genetic basis of alkene oxidation, supports ongoing research into the physiology and biochemistry of growth on ethene and VC, and provides biomarkers to facilitate detection of VC/ethene oxidizers in the environment. This is the first genome sequence from the genus Nocardioides and the first genome of a VC/ethene-oxidizing bacterium.


Assuntos
Actinomycetales/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Actinomycetales/metabolismo , Etilenos/metabolismo , Dados de Sequência Molecular , Oxirredução , Análise de Sequência de DNA , Cloreto de Vinil/metabolismo
11.
Genome Biol ; 12(2): R20, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21356102

RESUMO

BACKGROUND: The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum. RESULTS: We have produced a draft genome sequence of another group dictyostelid, Dictyostelium purpureum, and compare it to the D. discoideum genome. The assembly (8.41 × coverage) comprises 799 scaffolds totaling 33.0 Mb, comparable to the D. discoideum genome size. Sequence comparisons suggest that these two dictyostelids shared a common ancestor approximately 400 million years ago. In spite of this divergence, most orthologs reside in small clusters of conserved synteny. Comparative analyses revealed a core set of orthologous genes that illuminate dictyostelid physiology, as well as differences in gene family content. Interesting patterns of gene conservation and divergence are also evident, suggesting function differences; some protein families, such as the histidine kinases, have undergone little functional change, whereas others, such as the polyketide synthases, have undergone extensive diversification. The abundant amino acid homopolymers encoded in both genomes are generally not found in homologous positions within proteins, so they are unlikely to derive from ancestral DNA triplet repeats. Genes involved in the social stage evolved more rapidly than others, consistent with either relaxed selection or accelerated evolution due to social conflict. CONCLUSIONS: The findings from this new genome sequence and comparative analysis shed light on the biology and evolution of the Dictyostelia.


Assuntos
Evolução Biológica , Dictyostelium/genética , Evolução Molecular , Genoma , Genômica/métodos , Animais , Sequência de Bases , Sequência Conservada/genética , Transferência Genética Horizontal , Especiação Genética , Tamanho do Genoma , Histidina Quinase , Humanos , Repetições de Microssatélites , Dados de Sequência Molecular , Filogenia , Policetídeo Sintases/genética , Proteínas Quinases/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
12.
PLoS Genet ; 7(2): e1001314, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21379339

RESUMO

Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order to differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process.


Assuntos
Evolução Molecular , Trato Gastrointestinal/microbiologia , Especificidade de Hospedeiro/genética , Limosilactobacillus reuteri/genética , Simbiose/genética , Vertebrados/microbiologia , Animais , Aptidão Genética , Genoma Bacteriano/genética , Genômica , Humanos , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Roedores/microbiologia , Especificidade da Espécie
13.
J Bacteriol ; 193(9): 2373-4, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21398537

RESUMO

Victivallis vadensis ATCC BAA-548 represents the first cultured representative from the novel phylum Lentisphaerae, a deep-branching bacterial lineage. Few cultured bacteria from this phylum are known, and V. vadensis therefore represents an important organism for evolutionary studies. V. vadensis is a strictly anaerobic sugar-fermenting isolate from the human gastrointestinal tract.


Assuntos
Bactérias Anaeróbias/genética , Trato Gastrointestinal/microbiologia , Bactérias Anaeróbias/classificação , Sequência de Bases , DNA Bacteriano/genética , Genoma Bacteriano , Humanos , Dados de Sequência Molecular
14.
Stand Genomic Sci ; 5(3): 379-88, 2011 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-22675587

RESUMO

Chromohalobacter salexigens is one of nine currently known species of the genus Chromohalobacter in the family Halomonadaceae. It is the most halotolerant of the so-called 'moderately halophilic bacteria' currently known and, due to its strong euryhaline phenotype, it is an established model organism for prokaryotic osmoadaptation. C. salexigens strain 1H11(T) and Halomonas elongata are the first and the second members of the family Halomonadaceae with a completely sequenced genome. The 3,696,649 bp long chromosome with a total of 3,319 protein-coding and 93 RNA genes was sequenced as part of the DOE Joint Genome Institute Program DOEM 2004.

15.
Stand Genomic Sci ; 5(3): 356-70, 2011 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-22675585

RESUMO

Herpetosiphon aurantiacus Holt and Lewin 1968 is the type species of the genus Herpetosiphon, which in turn is the type genus of the family Herpetosiphonaceae, type family of the order Herpetosiphonales in the phylum Chloroflexi. H. aurantiacus cells are organized in filaments which can rapidly glide. The species is of interest not only because of its rather isolated position in the tree of life, but also because Herpetosiphon ssp. were identified as predators capable of facultative predation by a wolf pack strategy and of degrading the prey organisms by excreted hydrolytic enzymes. The genome of H. aurantiacus strain 114-95(T) is the first completely sequenced genome of a member of the family Herpetosiphonaceae. The 6,346,587 bp long chromosome and the two 339,639 bp and 99,204 bp long plasmids with a total of 5,577 protein-coding and 77 RNA genes was sequenced as part of the DOE Joint Genome Institute Program DOEM 2005.

16.
Nature ; 462(7276): 1056-60, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20033048

RESUMO

Sequencing of bacterial and archaeal genomes has revolutionized our understanding of the many roles played by microorganisms. There are now nearly 1,000 completed bacterial and archaeal genomes available, most of which were chosen for sequencing on the basis of their physiology. As a result, the perspective provided by the currently available genomes is limited by a highly biased phylogenetic distribution. To explore the value added by choosing microbial genomes for sequencing on the basis of their evolutionary relationships, we have sequenced and analysed the genomes of 56 culturable species of Bacteria and Archaea selected to maximize phylogenetic coverage. Analysis of these genomes demonstrated pronounced benefits (compared to an equivalent set of genomes randomly selected from the existing database) in diverse areas including the reconstruction of phylogenetic history, the discovery of new protein families and biological properties, and the prediction of functions for known genes from other organisms. Our results strongly support the need for systematic 'phylogenomic' efforts to compile a phylogeny-driven 'Genomic Encyclopedia of Bacteria and Archaea' in order to derive maximum knowledge from existing microbial genome data as well as from genome sequences to come.


Assuntos
Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Genoma Arqueal/genética , Genoma Bacteriano/genética , Filogenia , Actinas/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Biodiversidade , Bases de Dados Genéticas , Genes de RNAr/genética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
17.
ISME J ; 3(9): 1012-35, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19404327

RESUMO

Psychrophilic archaea are abundant and perform critical roles throughout the Earth's expansive cold biosphere. Here we report the first complete genome sequence for a psychrophilic methanogenic archaeon, Methanococcoides burtonii. The genome sequence was manually annotated including the use of a five-tiered evidence rating (ER) system that ranked annotations from ER1 (gene product experimentally characterized from the parent organism) to ER5 (hypothetical gene product) to provide a rapid means of assessing the certainty of gene function predictions. The genome is characterized by a higher level of aberrant sequence composition (51%) than any other archaeon. In comparison to hyper/thermophilic archaea, which are subject to selection of synonymous codon usage, M. burtonii has evolved cold adaptation through a genomic capacity to accommodate highly skewed amino-acid content, while retaining codon usage in common with its mesophilic Methanosarcina cousins. Polysaccharide biosynthesis genes comprise at least 3.3% of protein coding genes in the genome, and Cell wall, membrane, envelope biogenesis COG genes are overrepresented. Likewise, signal transduction (COG category T) genes are overrepresented and M. burtonii has a high 'IQ' (a measure of adaptive potential) compared to many methanogens. Numerous genes in these two overrepresented COG categories appear to have been acquired from epsilon- and delta-Proteobacteria, as do specific genes involved in central metabolism such as a novel B form of aconitase. Transposases also distinguish M. burtonii from other archaea, and their genomic characteristics indicate they have an important role in evolving the M. burtonii genome. Our study reveals a capacity for this model psychrophile to evolve through genome plasticity (including nucleotide skew, horizontal gene transfer and transposase activity) that enables adaptation to the cold, and to the biological and physical changes that have occurred over the last several thousand years as it adapted from a marine to an Antarctic lake environment.


Assuntos
DNA Arqueal/genética , Genoma Arqueal , Methanosarcinaceae/genética , Análise de Sequência de DNA , Adaptação Biológica , Temperatura Baixa , DNA Arqueal/química , Evolução Molecular , Genes Arqueais , Dados de Sequência Molecular
18.
Stand Genomic Sci ; 1(2): 183-8, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-21304655

RESUMO

Staphylothermus marinus Fiala and Stetter 1986 belongs to the order Desulfurococcales within the archaeal phylum Crenarchaeota. S. marinus is a hyperthermophilic, sulfur-dependent, anaerobic heterotroph. Strain F1 was isolated from geothermally heated sediments at Vulcano, Italy, but S. marinus has also been isolated from a hydrothermal vent on the East Pacific Rise. We report the complete genome of S. marinus strain F1, the type strain of the species. This is the fifth reported complete genome sequence from the order Desulfurococcales.

19.
Stand Genomic Sci ; 1(2): 189-96, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-21304656

RESUMO

Methanoculleus marisnigri Romesser et al. 1981 is a methanogen belonging to the order Methanomicrobiales within the archaeal phylum Euryarchaeota. The type strain, JR1, was isolated from anoxic sediments of the Black Sea. M. marisnigri is of phylogenetic interest because at the time the sequencing project began only one genome had previously been sequenced from the order Methanomicrobiales. We report here the complete genome sequence of M. marisnigri type strain JR1 and its annotation. This is part of a Joint Genome Institute 2006 Community Sequencing Program to sequence genomes of diverse Archaea.

20.
Stand Genomic Sci ; 1(2): 197-203, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21304657

RESUMO

Methanocorpusculum labreanum is a methanogen belonging to the order Methanomicrobiales within the archaeal kingdom Euryarchaeota. The type strain Z was isolated from surface sediments of Tar Pit Lake in the La Brea Tar Pits in Los Angeles, California. M. labreanum is of phylogenetic interest because at the time the sequencing project began only one genome had previously been sequenced from the order Methanomicrobiales. We report here the complete genome sequence of M. labreanum type strain Z and its annotation. This is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...